Aim
To design a four-bar crank-rocker mechanism for crushing rocks.
Constraints
· The vertical wall is expected to be 150 cm in height.
· The width of the rock crusher chamber is 60 cm
· The feed size is 50 cm, which represents the largest rock size, hence a minimum opening of 55mm is required at all times
· The discharge opening should be between 6 and 7 cm. The discharge opening size shall be 6 cm with a maximum error of 1% at the end of the crashing stroke and 7 cm with a maximum of 1% at the end of the returning stroke.
· The paths on the coupler lining should be closed curves leaning downward to avoid the escape of rocks upward during the crashing stoke.

Methodology
From the three positions described in the constraints the various links and the ratio of their lengths was determined using the graphical method. Once the ratios were ascertained, the actual lengths for the links were obtained by randomly choosing a length for one of the links and scaling the other links proportionally.
Using the Loop closure equation and the Jacobians obtained from them we are able determine the various angles associated with each of the links. Since we know the link lengths we were able to find the positions occupied by different links corresponding to the position of the driven link. By joining all these positions using line functions we were able to obtain instantaneous figures which were then run in a loop using a particular time interval to obtain an animated model for the garage door mechanism.
Loop Closure Equation
l2cosθ2+l3 cosθ3+l4 cosθ4=l1cosθ1
l2 sin θ2+l3 sin θ3+l4 sin θ4=l1 sin θ1
Jacobian
J = [−l3 sin θ3, −l4 sin θ4; l3cosθ3, l4cosθ4]
Form iterations to synthesis the four bar mechanism we got,

Solution
[image:]
Crank length, l2 = 1 cm
Coupler length, l3 = 158 cm
Follower length, l4 = 59 cm
The crank rotates about a fixed revolute joint at (0 cm, 0 cm)
The other fixed revolute joint is at (-7cm, -119cm)
The wall (blue dotted line) is 62.7 cm away from the crank pin
Results
[image:]
Figure: Locus of point 2
[image:]
Figure: Locus of point 3
The fact that this line is have a slope in this sense, helps the fact that - “avoid the escape of rocks upward during the crashing stoke”

[image:]
The minimum opening is slightly less than 6 cm and the maximum discharge opening is slightly more than 7 cm but within the design limits of 0.1cms
[image:]
The minimum opening at the top is always greater that 55cm and less than 60cm
[image:]
The wall given is 150 cm tall and is almost used at all angles
Matlab code used
%Declaring required variables
l2 = 1; l3 = 158; l4 = 69; %Link Lengths
l4x = -7; l4y = -120;
step = 1;
i = 1;
%Matrix that stores theta, coordinate points
theta = zeros(360, 2);
mechpts = zeros(360, 4, 2);
%Initial guess and flag variable to check whether to exit the loop
t3 = 250;
t4 = 205;
flag = 1;

while(i<=360)
 t2 = i;
 condn = true;
 iterate = 10;
 while(condn && iterate)
 iterate = iterate - 1;

 %Loop Closure Equations, Jacobian, Newton Raphston Method, ...
 j = [-l3*sind(t3), -l4*sind(t4); l3*cosd(t3), l4*cosd(t4)];
 f = -[l2*cosd(t2) + l3*cosd(t3) + l4*cosd(t4) - l4x;...
 l2*sind(t2) + l3*sind(t3) + l4*sind(t4) - l4y];
 x = j\f;
 %Update the variables
 t3 = t3 + x(1,1)*180/pi;
 t4 = t4 + x(2,1)*180/pi;
 if(abs(x(1,1))<0.0001 && abs(x(2,1))<0.0001)
 condn = false;
 end
 if(iterate == 0) %To check whether Newton Raphston method converges
 flag=0;
 end
 end
 if (flag==0)
 limits(1) = i-1;
 break;
 end
 theta(i, 1) = t3;
 theta(i, 2) = t4;

 i = i + step;
end

inlimits = true;
j = 1; %Initial orientation

% Animating done by displaying various instant of the mechanism continously
while(inlimits)

 %Calculating the x, y coordinates
 mechpts(j, 2, 1) = l2*cosd(j);
 mechpts(j, 2, 2) = l2*sind(j);
 mechpts(j, 3, 1) = mechpts(j, 2, 1) + l3*cosd(theta(j, 1));
 mechpts(j, 3, 2) = mechpts(j, 2, 2) + l3*sind(theta(j, 1));
 mechpts(j, 4, 1) = mechpts(j, 3, 1) + l4*cosd(theta(j, 2));
 mechpts(j, 4, 2) = mechpts(j, 3, 2) + l4*sind(theta(j, 2));

 if(j > 360) %Final orientation
 inlimits = false;
 end
end

image8.jpg

image12.jpg

image10.jpg

image6.jpg

image11.jpg

image7.jpg

